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We have computed the dispersion curves of plate-mode waves propagating in periodic composite structures
composed of isotropic aluminum cylinders embedded in an isotropic nickel background. The phononic crystal
has a square symmetry and the calculation is based on the plane-wave expansion method. Along �X or �M
directions, shear-horizontal modes do not couple to the Lamb wave modes which are polarized in the sagittal
plane. Whatever the direction of propagation in between �X and �M, shear-horizontal modes convert to Lamb
waves and couple with the flexural and dilatational modes. This phenomenon is demonstrated both through the
mode splitting in the lower-order symmetric band structure and through the calculation of all three components
of the particle displacements. The phononic case is different from the pure isotropic plate case where shear-
horizontal waves decouple from Lamb waves whatever the direction of propagation.
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In the last past decade, the existence of forbidden gaps in
the band structure of acoustic and elastic waves propagating
in periodic composite materials has received a great deal of
attention. For frequencies within the band gap, the propaga-
tion of acoustic or elastic waves is forbidden regardless of
the direction, suggesting numerous technological applica-
tions such as acoustic filters, ultrasonic silent blocks, acous-
tic mirrors, etc. Such composite structures for bulk, surface,
or plate-mode waves have been studied both theoretically
�1–11� and, in a less extent, experimentally �12–14� by many
groups. In particular, there has been a growing interest for
Lamb waves and plate modes which can be used for a variety
of high-frequency applications such as physical, chemical,
and biological sensors.

Strictly speaking, a plate can support an infinite number
of guided waves with nonzero cutoff frequencies, which all
are solutions of the dispersion relation. However, in practice,
a thin plate admits a number of antisymmetric and symmetric
Lamb waves and shear-horizontal �SH� waves, which de-
pends on the value of the ratio h /�, where h and � are,
respectively, the thickness of the plate and the acoustic wave-
length. Recently, Chen et al. �15� used a plane-wave expan-
sion method �PWE� to calculate the band structures of
lowest-order Lamb waves propagating perpendicularly to the
alternating layers of one-dimensional �1D� phononic crystal
thin plates. They have shown that, in these 1D phononic
slabs, SH waves decouple from the Lamb waves and that the
ratio of the plate thickness to the lattice spacing is the most
important parameter for the formation of band gaps in Lamb
modes, but not in SH mode. A similar result was found re-
cently in the two-dimensional �2D� case by Sun et al. �16�
who studied the propagation of Lamb waves along �X in 2D
phononic crystal plates with a square lattice. In homoge-
neous plates, SH waves only exist if the material is isotropic.
In that case, three types of the free plate modes must be

considered, namely the pure shear-horizontal mode which
polarization is parallel to the free surfaces; this SH mode is
uncoupled from the two others modes: The dilatational and
the flexural modes. This greatly simplifies the investigation
of Lamb wave motion in the isotropic materials. When the
material is anisotropic, SH modes are still solutions for the
equations of motion, but only along some particular direc-
tions of high symmetry. Outside these particular solutions,
there is no longer a family of pure shear-horizontal modes
independent from the dilatational and flexural modes: All
partial waves are coupled and the free plate modes can only
be classified either as symmetric or as antisymmetric modes
with respect to the median plane.

However, in a phononic crystal made of two isotropic
materials, SH waves cannot exist in the same way as in the
pure isotropic plates. Indeed, Sun et al. �16� have demon-
strated by using a finite-difference time-domain technique,
that when waves propagate along the �X direction in the 2D
phononic crystals, thin plates consisting of an array of iso-
tropic steel cylinders embedded in an isotropic epoxy matrix,
SH waves decouple from Lamb waves. To our knowledge,
this property has not been studied for propagation along
other directions of the irreducible Brillouin zone so far.

In this paper, we analyze the relationship between SH
waves and Lamb waves in 2D phononic crystal plates con-
sisting of a square array of isotropic aluminum �Al—material
A� cylinders embedded in an isotropic nickel �Ni—material
B� background, for propagation along any direction of the
irreducible Brillouin zone. To this end, one must solve the
equations of motion
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where both the density ��x� and the elastic stiffness tensor
C�x� are periodic functions of the in-plane components x
= �x1 ,x2�. Due to the artificial anisotropy of the medium,
there are no analytical solutions to this equation and numeri-*Corresponding author; bernard.bonello@insp.jussieu.fr
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cal schemes are generally implemented to calculate the dis-
placement vector u�x ,x3 , t� in the system. Different methods
have been proposed, among which the PWE is one of the
simplest. Basically, it consists in taking advantage of the pe-
riodicities along x1 and x2 to expand u, C and � in Fourier
series and in solving Eq. �1� in the reciprocal space. Bound-
ary conditions are then introduced to account for the particu-
lar geometry of the system under study, leading generally to
CPU-time-consuming computations. We rather used a super-
cell PWE method. A comprehensive description of this
method is out of the scope of this paper and we give here
only the main outlines �17�. In short, it consists in building a
fictitious three-dimensional �3D� periodic system by staking
along the out-of-plane direction x3 a unit cell consisting of
the actual PC, surrounded by vacuum layers. The dispersion
curves of the actual 2D PC are then deduced from the Fou-
rier transform of the equations of motion in this fictitious
medium. Since the vacuum layers avoid the coupling of the
vibrational modes between adjacent PC layers, deriving the
dispersion curves of the PC does not require writing explic-
itly the boundary conditions on the free surfaces �18–20�.

The lowest-order dispersion curves for the plate waves
propagating along the boundaries of the irreducible part of
the Brillouin zone are shown in Fig. 1. In the calculation, we
fixed the filling fraction to f =0.6 and the thickness-lattice
spacing ratio was h /a=0.80. The physical parameters of alu-
minum and nickel used in the numerical calculations are
given in Ref. �5�. The vertical axis in Fig. 1 is the normalized

frequency �*=�a /Ct, where Ct stands for �C̄44 / �̄�1/2; C̄44
= fC44

A + �1− f�C44
B and �̄= f�A+ �1− f��B are the effective elas-

tic stiffness tensor and density, respectively. The horizontal
axis is the reduced wave number k*=ka /�. In the calcula-
tions, x1 and x2 axes were parallel to the edges of the square
unit cell. To insure very good convergence of the computa-
tions, we considered 25 reciprocal vectors in the propagation
plane �x1 ,x2� and five Fourier components along the out-of-
plane direction x3. Moreover, we have only considered the
low-frequency part of the Brillouin zone ��*�5 in reduced
units� where the lowest-order SH waves along �X and �M
propagation directions are the fundamental first modes in the
band structure.

When the plate waves propagate along �X, the SH wave
and Lamb waves are decoupled and the fundamental sym-
metric Lamb wave �S0� crosses over the SH1 wave at a point
denoted R1 in Fig. 1. To further examine whether this inter-
section is real or apparent, we have calculated the displace-
ment fields associated to SH1 and S0 modes while propagat-
ing along �X. The results are displayed in Fig. 2 where we
show the magnitudes of the components u1 for S0 and u2 for
SH1. Note that both S0 and SH1 have in-plane polarization
for propagation along �X and that u1 �respectively, u2� is the
only nonzero component for S0 �respectively, SH1�. What-
ever the wave-number value along �X, both components are
different from zero and therefore, R1 is actually a crossing
point. It is also interesting to notice that the component u1 for
S0 goes to zero at X point. For comparison, we have calcu-
lated its magnitude at X point, for the high-frequency edge of
the gap ��a /ct=5.3—not shown in Fig. 1�. We found �u1�
�2, about 2 times as large as the component �u2� of SH1.

We have then calculated the lowest-order dispersion
curves for plate waves with k vector making an angle 	
=5°, 15°, 30°, and 40° with respect to the direction �X in the
reduced Brillouin zone. The results are shown in Figs.
3�a�–3�d�. As soon as 	 departs from 0°, and because of the
anisotropy of the effective velocity in this phononic crystal
made of two isotropic materials, the sagittal plane �i.e., the
plane parallel both to k and to x3� is no longer a plane of
symmetry �21,22� and there is no longer a family of SH
modes independent from the flexural and the dilatational
modes. All partial waves are coupled and the free plate
modes can only be classified as symmetric or antisymmetric
with respect to the midplane of the plate �23�. In that case, as
shown in Fig. 3, a splitting occurs at points T1, T2, T3, and
T4, which are equivalent to the crossing point R1 in Fig. 1
�	=0° �. A physical explanation for this splitting can be
found from the conversion between SH waves and symmet-
ric Lamb waves: When two plate waves intersect, those
modes will split rather than cross if plate modes are of the
same symmetry �23�. The sharp bends of the dispersion
curves induce a band gap which is much larger for plate
waves than it is for bulk waves �8�. Moreover, the magnitude
of this band gap depends on the angle 	; we measured the
values 0.1858, 0.5109, 0.6853, and 0.2588 around points T1,
T2, T3, and T4 respectively. When the plate waves propagate

0

1

2

3

4

5

R1

S0
S0SH0

A0
A0

R2

Reduced wave vector

�
a
c t-1

SH1

SH0

SH1

X

M

� X M �

�

FIG. 1. Dispersion curves of plate waves in a phononic crystal
with the square lattice symmetry. �Al cylinders in a Ni background;
f =0.6, h /a=0.8�.
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FIG. 2. Displacement components of SH1 and S0 along �X.
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along �M �	=45° �, the sagittal plane is again a plane of
mirror symmetry, just as for propagation along �X �	=0° �.
Therefore, the dispersion curves of the free plate vibrations
can again be classified into the three families: Flexural, dila-
tational, and SH, as show in the right-hand panel in Fig. 1
where the shear-horizontal mode SH1 intersects the funda-
mental dilatational mode S0 at point R2, similar to point R1 in
the left-hand panel.

In order to check to which extent our findings can be
generalized, we have investigated the propagation at 	
=15°, in a phononic plate with the same composition but
with different values of both the filling fraction and the thick-
ness to lattice parameter ratio. The results for �f =0.2, h /a
=0.80� and �f =0.6, h /a=0.20� are displayed in Figs. 4�a�
and 4�b�, respectively. We have also studied how these re-
sults are modified when one considers inclusions made of a
material harder than the background, as this is the case for Ni
cylinders embedded in an Al plate. The result is displayed in
Fig. 4�c�. It is clear from Fig. 4 that the band gap in the
splitting region is not strongly affected by either the geo-
metrical parameters, or by the composition of the phononic
plate.

To further understand the peculiar behavior of the plate
modes at T1, T2, T3, and T4, we have computed, for 	=15°,
the displacement fields in the thickness of the plate, below a
selected point in the unit cell: The center of the Al cylinder.
The symmetries being conserved between the points T and
the edge of the reduced Brillouin zone, we have calculated

the displacement fields at points located along XM. Shown in
Fig. 5 are the relative amplitudes of the displacement fields
calculated at points A, B, C, D, and E in Fig. 3�b�. The
dotted, dashed, and full lines in Fig. 5, refer, respectively, to
u1, u2 and u3. It is clear from this figure that the displace-
ments are either symmetric or antisymmetric with respect to
the midplane of the plate. Indeed, at points A and B, both real
and imaginary parts of u3 have antisymmetric variations,
whereas u1 and u2 exhibit symmetric behaviors. This is the
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FIG. 3. Dispersion curves of plate waves for different angles:
	=5° �a�, 	=15° �b�, 	=30° �c�, 	=40° �d�.
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opposite situation at points C, D, and E where both real and
imaginary parts of u3 are symmetric, whereas the real and
imaginary parts of u1 and u2 are antisymmetric with respect
to the midplane of the plate. This analysis confirms that the
vibrational modes at points A and B are antisymmetric Lamb
waves, and symmetric Lamb waves �24� at points C, D, and
E.

In conclusion, we have investigated the propagation of
plate waves along all directions of the irreducible Brillouin

zone of a phononic crystal thin slab. Along the �X or �M
directions, SH modes do not couple to the Lamb waves po-
larized in the sagittal plane. Between �X propagation and
�M propagation direction, SH modes convert to Lamb wave
modes and couple with the flexural and dilatational modes,
giving rise to a splitting of the mode.

J.-J. Chen is indebted to “La Ville de Paris” for financial
support.
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FIG. 5. Displacement components of plate waves propagating in a Al /Ni phononic crystal �f =0.6, h /a=0.8� calculated at points A, B,
C, D, and E in Fig. 3�b�, as a function of the distance from the midplane. The unit of the horizontal axis refers to the lattice parameter a;
dotted, dashed, and solid lines correspond, respectively, to u1, u2, and u3.
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